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Local stress and strain fields in the unit cell of an infinite, two-dimensional, peri-
odic fibrous lattice have been determined by an integral equation approach. The
effect of the fibres is assimilated to an infinite two-dimensional array of fictitious
body forces in the matrix constituent phase of the unit cell. By subtracting a vol-
ume averaged strain polarization term from the integral equation we effectively
embed a finite number of unit cells in a homogenized medium in which the over-
all stress and strain correspond to the volume averaged stress and strain of the
constrained unit cell. This paper demonstrates that the zeroth term in the govern-
ing integral equation expansion, which embeds one unit cell in the homogenized
medium, corresponds to the generalized self-consistent approximation. By com-
paring the zeroth term approximation with higher order approximations to the
integral equation summation, both the accuracy of the generalized self-consistent
composite model and the rate of convergence of the integral summation can be
assessed. Two example composites are studied. For a tungsten/copper elastic
fibrous composite the generalized self-consistent model is shown to provide ac-
curate, effective, elastic moduli and local field representations. The local elastic
transverse stress field within the representative volume element of the general-
ized self-consistent method is shown to be in error by much larger amounts for

1 This paper was produced from the authors’ disk by using the TEX typesetting system.
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546 K. P. Walker, A. D. Freed and E. H. Jordan

a composite with periodically distributed voids, but homogenization leads to a
cancelling of errors, and the effective transverse Young’s modulus of the voided
composite is shown to be in error by only 23% at a void volume fraction of 75%.

1. Introduction

In a recent paper Christensen (1990) compared the behaviour of the differential
method (Roscoe 1952), the Mori-Tanaka method (Benveniste 1987), and the gen-
eralized self-consistent method (Christensen & Lo 1979, 1986) when applied to
the evaluation of the effective elastic moduli of composite materials. The effec-
tive shear modulus/viscosity of a polydisperse emulsion of solid spherical droplets
was computed by the three methods and compared with the experimental work
of Eilers (1941). Christensen showed that the prediction from the generalized self-
consistent method correlates the experimental data of Eilers, while the computa-
tions from the differential and Mori-Tanaka methods underpredict the effective
viscosity /shear modulus of the composite solid/solution by up to a factor of ten
at 70% volume fraction. It is therefore of interest to compare the results of the
generalized self-consistent composite model with those of a periodic composite,
for which exact results can be obtained. By so doing, we are able to assess—for
the first time—the accuracy of the generalized self-consistent method through a
comparison with a method on equal footing.

The generalized self-consistent method in this paper differs from that derived
by Christensen and Lo (1979, 1986) in several important ways. In their model the
local elastic fields in the generalized self-consistent method for fibrous composites
are usually computed for a representative volume element in which a cylindrical
fibre is embedded in an annular matrix. This volume element is, in turn, em-
bedded in an infinite effective elastic medium possessing transversely isotropic
properties. They assume that the composite medium is comprised of representa-
tive volume elements of widely varying size, so that the overall elastic properties
of the composite are well represented by a transversely isotropic medium sur-
rounding the representative volume element. In their model the elastic fields,
which vary throughout the fibre and matrix phases in the volume element, are
computed exactly from an elasticity problem in which the representative volume
element is constrained by the transversely isotropic homogenized medium. The
overall elastic moduli of the homogenized medium are then obtained by volume
averaging the constrained elastic stress and strain fields over the representative
volume element.

In the present paper we introduce a generalized self-consistent method in which
the representative volume element has a rectangular boundary. This represents
one unit cell of an infinite two-dimensional periodic lattice. To obtain the gener-
alized self-consistent approximation the remainder of the periodic lattice is then
replaced by a homogenized medium possessing tetragonal elastic symmetry. The
task which then confronts us is to determine the elastic stress and strain fields
in the two composite phases within the unit cell when constrained by (a) the
homogenized medium with tetragonal elastic symmetry; and (b) the remainder
of the infinite periodic lattice. In both cases the elastic fields within the unit cell
are determined numerically by solving a periodic boundary value problem for an

Phil. Trans. R. Soc. Lond. A (1993)
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Modelling the elastic behaviour of periodic composites 547

infinite lattice of unit cells arranged in rectangular order. The elastic disturbance
caused by the fibres in the matrix is treated as a fictitious body force problem
and the net effect within the unit cell is determined by summation over all the
fibres in the periodic lattice from an integral equation using a Green’s function
method.

In the numerical problem only the effects from a finite number of fibres sur-
rounding the given unit cell are summed. This means that the medium which
surrounds the outermost fibres corresponds to the matrix constituent phase of
the unit cell. In order to obtain the correct elastic response within the unit cell,
the outer medium, surrounding the finite number of fibres, should correspond to
a homogenized representation of the remainder of the lattice rather than to the
matrix constituent phase. This correspondence can be achieved by applying suit-
able surface tractions on the boundary separating the outer fibres from the matrix
constituent phase. We show that the additional strain within the unit cell, which
is caused by adding this layer of surface traction, is equivalent to subtracting a
volume averaged polarization strain term from the original integral equation. This
volume averaged term performs three functions in the Green’s function integral
equation. Its first office is to secure the equality of the overall uniform strain in
the outer medium with the volume averaged strain of the constrained unit cell.
Secondly, this volume averaged term is also necessary to convert the conditionally
convergent (or divergent) integral equation into an absolutely convergent solution
of the periodic boundary value problem. Finally, we find that this term effectively
embeds a finite number of unit cells in the effective homogenized medium, and
the generalized self-consistent approximation then emerges by considering only
one term in the body force summation. In this approximation only one unit cell
is embedded in the homogenized outer medium and the elastic symmetry of this
medium is determined (not assumed) from the integral equation boundary value
problem.

In the usual form of the generalized self-consistent method, the homogenized
outer medium will possess the elastic symmetry of the volume averaged unit
cell. If we elect to solve the elasticity problem of a unit cell embedded in this
homogenized medium by a Green’s function technique, then the normal process
would involve constructing a Green’s function which possesses the elastic sym-
metry of the homogenized medium, and then assimilating the embedded unit cell
to a fictitious body force. The present method uses an isotropic Green’s function
appropriate to the matrix material, and the homogenized outer medium is simu-
lated by applying a layer of surface traction to the surface separating the finite
number of summed fibres from the actual surrounding matrix constituent phase.

The object of the present paper is to determine the variation of the local elastic
stress field within the unit cell of a periodic composite, and to determine the
errors in this stress field and the effective transverse Young’s modulus when the
remainder of the periodic lattice is replaced by a uniform homogenized material
possessing tetragonal elastic symmetry.

2. Local stress and strain fields

Previous articles on Fourier’s series and Green’s function approaches relevant
to the present work may be found in (Nemat-Nasser & Taya 1981; Nemat-Nasser
et al. 1982; Nemat-Nagser & Iwakuma 1983; Iwakuma & Nemat-Nasser 1983;

Phil. Trans. R. Soc. Lond. A (1993)
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Nunan & Keller 1984; Accorsi & Nemat-Nasser 1986; Nemat-Nasser et al. 1986)
and (Eshelby 1957; Barnett & Swanger 1971; Barnett 1972; Korringa 1973; Zeller
& Dederichs 1973; Gubernatis & Krumhansl 1975; Levin 1976; Chen & Young
1977; Cleary et al. 1980; Mura 1987), respectively. A constitutive formulation
given in previous papers (Walker et al. 1989, 1990, 1991, 1992), which is suitable
for describing the inelastic behaviour of composite materials under thermome-
chanical loading conditions, is now specialized to isothermal elastic deformation.
The equations are left in incremental form to permit convenient comparison with
the preceding papers.

The form of Hooke’s law suitable for infinitesimal strains can be written in the

i 1 f
incremental form Ao (r) = Dijr (r) Aely (7)), (2.1)

where at the point in the unit cell with position vector r, Ag;; () is the local
stress increment, D, () is the elasticity tensor and Ae}; (r) is the total strain
increment. When a uniform overall strain increment of AeY, is applied to the
periodic fibrous composite depicted in figure 15 or ¢, the total strain increment
can be written in the form

Aeyy (r) = Aej + Apjy (), (2.2)

where the perturbation strain increment, Apj, (r), represents the deviation from
the overall strain increment, Asgl, due to the presence of the fibres. The vari-
ation of this local field quantity is often determined (Lene 1986; Bahei-El-Din
et al. 1987; Teply & Dvorak 1988; Bahei-El-Din & Dvorak 1989; Dvorak 1991)
by applying periodic boundary conditions to a finite element discretization of
the unit cell, or by breaking the unit cell into rectangular subvolumes (Aboudi
1989, 1991; Paley & Aboudi 1992) and enforcing periodicity through continuity
of displacements and surface tractions at the unit cell boundary.

In the present paper the local field quantities are determined by discretizing
the unit cell into rectangular subvolumes, and periodicity is enforced naturally
by expanding the perturbation strain increment into a Fourier series. By apply-
ing the Poisson sum formula to the Fourier series representation we have shown
(Walker et al. 1989, 1990) that the Green’s function method is recovered. The
Green’s function method involves a summation of fictitious body forces due to
the presence of fibres in the matrix constituent phase of the composite. Within
the unit cell the local variation of the perturbation strain increment is evaluated
by summing the contributions from these fictitious body forces in each fibre of
the infinite periodic lattice. We will show in the sequel that the zeroth term of the
infinite sum in the Green’s function formulation corresponds to the generalized
self-consistent method.

The elasticity tensor at any point r in the composite material may be written

in the form Dijia (r) = D% + 6Dijwy (), (2.3)
where 5Dijkl (’I‘) = (7') (D;fjkl - D?;kl) (2'4)
In this relationship ¥ (r) = 1 in the fibre and 9 (r) = 0 in the matrix, with ijkl

denoting the elasticity tensor of the fibre and Dy, that of the matrix. We have

found (Walker et al. 1989, 1990, 1991, 1992) that in the Fourier series approach
the total strain increment in the unit cell of a three-dimensional periodic lattice

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 1. (a) A finite lattice embedded in an infinite outer medium whose elastic properties
correspond to the matrix constituent phase. The strain increment inside S is governed by the
integral equation (2.17). (b) A finite lattice embedded in an infinite outer medium whose elastic
properties correspond to the homogenized (volume averaged) composite. The strain increment
inside S is governed by the integral equation (2.22). The strain increment Ae%, produces a surface
traction increment At2tuel = njD?jMAagl on the surface S in the homogenized medium, but
would produce a surface traction increment At = nij;MAsgl when applied to the surface S in
(a). (¢) An additional layer of incremental surface traction applied to the surface, S, effectively
embeds the unit cells in a homogenized medium. The strain increment inside S is then governed
by the integral equation (2.22). The Green’s function corresponds to the isotropic matrix phase
and the effect of the outer homogenized medium is assimilated to the layer of surface traction
on S.
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is determined by solving the integral equation,

ASEJ (r ) = Aé‘gl

EEY S g € /// ) 8D (1) A, (1) AV (), (25)

np=0

where the fourth rank tensor ggimn (€) is given by

Grimn (§) = F(CaCM, 1 (€) + Gl MM (C)), (2.6)

in which the Christoffel stiffness tensor M;; (¢), with inverse MJl (€), is defined
(Barnett & Swanger 1971; Barnett 1972; Mura 1987) by the relation

Mij (C) pquCpCm (2'7)

in which {, = &/v/(€émém) = &p/& are the components of a unit vector in the
direction of the Fourier wave vector &, with £ = /(£m&m) denoting its magnitude.
In equation (2.5) the sum is taken over integer values in which

2 nq 2 U] 2 ng

and Ly, Lo, L3 are the dimensions of the unit periodic cell in the z1, zo, x3
directions, so that the volume of the unit cell is given by the relation, V, =
L1LoL3. The values of ny, ng, n3 are given by

np, =0,£1,£2,£3,...,etc., for p=1,2,3 (2.9)

and the prime on the triple summation signs indicates that the term with n; =
ng = ng = 0 is excluded from the sum.

In equation (2.5) the term containing the primed triple Fourier sum repre-
sents the perturbation strain increment in equation (2.2), so that if the Fourier
coefficients in (2.5) are denoted by Ay (n1,n2,n3), then

1 e
Akt (n1,n2,n3) = — 77 Ikimn ) ///e_‘g" 8Drrs (77) Ael, (r) AV (+').
Ve

(2.10)

We now define the polarization strain increment, Apg (7), to be the fully

summed Fourier expansion of the perturbation strain increment, Ap}, (r), which
includes the zeroth (constant) term, so that

(2.8)

Apit (r) =3 Z > A (n1,na,ng) €7 (2.11)
np=0
and
Apyy ()= Z Z Api (n1,no,ng) 7

np=0
+oo .

- Z Z Z Agi (n1,n2,n3) €47 — Ay (0,0, 0)
np=0

= Ap (r) — A (0,0,0), (2.12)

Phil. Trans. R. Soc. Lond. A (1993)
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where the primed series in (2.5) is now written as the fully summed series minus
the zeroth term. Now the zeroth term of a Fourier series is just the volume average
of the function—whose Fourier expansion is required—over the unit cell of the
periodic lattice, so that in equation (2.11)

A4 (0,0,0) = % ][0 ) ) = A (7)), (2.13)
Ve

where the angle brackets are used to denote the volume average of the enclosed
expression over the unit cell. Accordingly, if we write the perturbation strain
increment in terms of the polarization strain increment in the form

Apgy (1) = Apgr (1) — (Apga (1)), (2.14)
then the total strain increment can be written as
Aegl (r) = Aegl + Apgy (1) — (Apg (7). (2.15)
On volume averaging this equation over the unit cell we obtain
(Ach () = Acf, (2.16)

so that the omission of the zeroth term in the Fourier series representation of the
perturbation strain increment automatlcally ensures that the volume average of
the total strain increment, (Ae}; (r)), over the unit cell (and hence by periodicity
over the entire composite) is equal to the overall applied strain increment, Aagl. It
also ensures that the volume averaged perturbation strain increment, (Apj; (1)),
is zero so that on average the strain field in the composite fluctuates as much
above the overall applied strain field as it does below it.

If we assume that the effect of the cylindrical fibres can be assimilated to fic-
titious body forces distributed throughout each cylinder in the periodic lattice,
then the total strain increment at any point within the unit cell in the Green’s
function formulation (Walker et al. 1989, 1990) is governed by the integral equa-
tion

Ael (r) = AeY), — // Ugimn (1 — 7") 8 Dyrs (7') Acl, () dV ("), (2.17)

where the fourth rank tensor Uk, (7 — ') gives the kl component of the total
strain increment at point r due to the mn component of a stress increment applied

at point 7’ in the infinite matrix with elasticity tensor D& . i.e.
1 (0%Grm(r—71)  0?Gpn (r —7')
S m uu 2.18
Ui (r = 1) = = 3 ( duidzn | Ozsdan ) (2.18)

and the volume integration in equation (2.17) extends over all the periodic cells
of the composite material, i.e. over the entire composite. The Green’s function
tensor is defined by the Fourier integral (Barnett & Swanger 1971; Barnett 1972;

Mura 1984, Walker 1993)
(|3 K M iK ’
/// U )e E(r r)v (2'19)

Phil. Trans. R. Soc. Lond. A (1993)
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in which the vector ¢ is now defined by the relation {; = K;/K with K =
V/(K4Ky) denoting the magnitude of the vector K = (K71, K2, K3).

Due to the singularity of the function Uy (r — 7’), the volume integral in
equation (2.17) does not exist in the Riemann sense. This difficulty is easily
avoided by noting that in the derivation the actual integral equation takes on the
form

Acl (r) = A& + = {Bml /// akaaxn ') §Dpmps (1) Acl, (r") AV (')

0 OGim (r — /) ) / /
* 5o /V/ / ! o O Drmnrs (r') Aery (r') AV (r)}. (2.20)

When the Green’s function is expressed as a Fourier integral, the differentiation
with respect to the variables x; and zj in (2.20) may be taken under the integral
signs, and therefore equation (2.17) is correct when Ugjp,y, (7 — ') is represented
as the derivative of the Fourier integral (cf. Appendix G of Walker et al. 1989).
However, when the Green’s function is written as an algebraic expression, we
must either use equation (2.20), or else use (2.17) in the Cauchy principal value
sense, and observe that the convective differentiation of the volume integral by
means of Leibniz’s rule produces an additional jump term as noted by Bui (1978).

In Walker et al. (1989, 1990) we showed that the Poisson sum formula could be
applied to the Fourier series representation of the polarization strain increment,
Apy; (r), to turn it into an equivalent Green’s function formulation. The Poisson
sum formula transforms the unprimed Fourier summation in equation (2.11) into
an implied summation over all the unit cells in the periodic lattice, so that in the
Green’s function summation, equation (2.11) is replaced by the equivalent sum,

Apy (v / / Ui (7 — 1) 8 Dyars (') AT, () AV (). (2.21)

Thus equation (2.17) does not satisfy the requirement that (Aef, (r)) = AeY,,
since equation (2.21) corresponds to the unprimed or full Fourier series summa-
tion. In order to effectively prime the formulation in equation (2.17) we must
subtract the zeroth or volume averaged term, equation (2.13), and write

Acyy (1) = Ay + Apy () — (Apg (7))
= Aed, — // Ukimn (7 — ") 8 Dy (') Ay (') dV ()

Vc/// dv (r ///Uklmn P — 1) 6 Dyprs (1) Ay (') AV (') . (2.22)

3. Remarks on volume averaging

Tie volume integration in equation (2.17) represents that contribution to
the total strain increment arising from fictitious body force stress increments,

Phil. Trans. R. Soc. Lond. A (1993)
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8Dynrs (') AeX, ('), induced in the cylindrical fibres embedded in the matrix
constituent phase of the composite material. In a numerical evaluation of this
integral only the contribution from a finite number of cylinders, surrounding the
field point r and enclosed within the volume V; with bounding surface S, are
considered. Beyond S the material corresponds to the matrix constituent phase
of the composite, as depicted in figure 1a.

If we now suppose that the outer region beyond S, which extends to infinity,
is comprised of a material which has the volume averaged elastic properties of
a unit cell, as in figure 1b, then the average strain increment on the bounding
surface S induced by an overall uniform stress increment Ac9, applied at infinity
is given by

AE (Dz]kl) 1Aal(c)lv ' (31)

where D,?j w1 1s the elasticity tensor of the homogenized (volume averaged) outer
phase. The incremental surface traction on S in figure 1a corresponding to this
strain increment would be

At? (’I"I) ="nj (T‘/) D?]}kZAegl‘ (32)

However, since the material in the outer phase corresponds to the matrix con-
stituent phase, the average strain increment on S (when equation (2.17) — corre-
sponding to figure 1a — is the governing integral equation) will be given by

Acl; = (Dfy) A}, (3.3)
and the corresponding incremental surface traction on S in figure 1a is
Atil ('rl) =n;\r ( ) DzjklAgllcl =nj (7’/) AO‘% (3'4)

Hence, the total strain increment at any point inside the surface S in figure 1a
will be identical to that in figure 1b if we add an incremental layer of depolarizing
surface traction on the surface S in figure 1a of magnitude

At; (v) = At (r') = At} (r') = n; (') D (Al — Aey). (3.5)

It is clear on physical grounds that the strain increment at any point inside S,
when only a finite number of cylinders contribute to the result, is approximately
modelled by figure 1b rather than by figure 1a. That is, equation (2.22) which

gives <A5,€l (r)) = A&), in any unit cell in the composite, either inside or outside
of 9, is the appropriate equation to determine the local variation of the total
strain increment.

Thus, if we make the situations depicted in figure 1 a and b equivalent to each
other by adding a layer of incremental depolarizing surface traction of amount
given by equation (3.5) on the surface S in figure 1c¢, then the total strain in-
crement will be given by the volume sources in equation (2.17) plus the strain
increment arising from the layer of surface traction on S, namely,

Aedy (r) = AeY, — // Ugimn, (7 — 7') 8 Dmnrs (77) Ael, (r') AV (")

' .{/ Tatm (= ') At (') dS (), (3:6)

Phil. Trans. R. Soc. Lond. A (1993)
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with Atp, (') given by (3.5), and where the third rank tensor Iy, (r — ') gives
the kl component of the total strain increment at point r due to the mth com-
ponent of a surface traction increment at point 7’ in the infinite matrix with

elasticity tensor Dy, .., i.e.

OGgm (r — 1) N OGim (r — "'l)> ) (3.7)

_ ! — —
Ly (r " ) 2 ( ox; Oxy,

We now show that the additional resultant strain increment at r due to this in-
cremental surface traction on S in the surface integral of equation (3.6) is equal to
minus the volume average of the polarization strain increment in equation (2.22),
namely, —(Apg; (r)). This is physically evident by noting that the distribution
of the depolarizing layer of surface traction on S in figure 1a is equivalent to
replacing the material in the outer phase with the homogenized material, which
corresponds to determining the total strain increment from equation (2.22).

Let the field point r be situated near the centre of the volume V in figure 10,
and consider the volume integration in equation (2.22) to extend only over the
finite number of unit cells enclosed within S. The total strain increment at r is
then given by

Ael; (r) = AeY, — // Uktmn (1 = 7) 8 Dyes (') A () AV (¢)

+ Vc// dv (r) // Ukimn (P = 7') 8Dyrs (v') Ay () AV ('), (3.8)
V. 1%

where V. is the volume of the unit cell containing the field point 7. Now at any
source point 7', the incremental form of Hooke’s law is

AO’kl (7“/) = Dklrs (7“/) Aé“g; (7’,) = (Dg;rs + 5Dklrs (’I"I)) A&;.I‘s ('I’I) s (39)
so that
§Dpps (v') Aef, (r) = Aoy (r') — DS, Ack, (). (3.10)
The last volume averaged term in equation (3.8) can then be written as
(Apgi (1)) =

///dV // Ukimn (r —7') (Aamn( - mmsAe (r ’)) av (r').

(3.11)
By the mean value theorem the averaging with respect to r is equivalent to
writing (3.11) in the form

(Bpa (r // Uit (0 =) (Ayn (1) = Dife, Aty (1)) AV (1),

(3.12)
where g is the position vector to some effective mean point contained in the
volume V. Since the total strain increment determined by (3.8) satisfies the
volume average condition, it is clear that the source terms in (3.12) fluctuate
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as much above their average counterparts as below them, so that we may write
(3.12) in the form

(Bput (1) = = [[ [Vt (@ =) (A8 = DRpu ) AV (). (3.13)
Vs

The volume integral can now be transformed, by means of Gauss’s divergence the-

orem and the relation 0Ggp, (r — r') /0xy, = —0Ggy, (r — 7') /O, into a surface
integral over S, so that
(Bpa (1)) = = [[ Tup (o= 1) Aty () a3 (), (314
S

where, with the use of equation (3.3),

Aty (') = nq (') [Di  Ae% — Aol = ng (') Dl (A, - Ack,),  (3.15)

which shows that the application of the depolarizing surface traction increment in
equation (3.6) is equivalent to subtracting the volume average of the polarization
strain increment in equation (2.22).

The integral in equation (2.17), when applied to an infinite lattice, is condition-
ally convergent. That is, it depends on the shape of the infinite outer surface S
in figure 1b. This arises from the fact that the two-dimensional Green’s function
derivative, Iy (1 — '), decreases as r~1 (= |r — 7/|71) as we recede from the
field point. However, if the infinite outer surface is cylindrical, the incremental
surface area per unit length is dS = rdé, so that Iy, (r — ') dS(r") does not
decrease with increasing r. Fven when the surface S is infinitely removed and we
sum over an infinite number of unit cells, the effect of the incremental surface
traction layer on S contributes a finite amount, —(Apg (1)), to the total strain
increment.

We may now examine the convergence of the volume integrals in the integral
equation (2.22). By the mean value theorem the integral equation may be written
as

Ae%} (r)= Aagl
+ /// (Uklmn (0 —7") — Ukimn (r — r’)) 8 Drrs (') Acl, (') AV (v'). (3.16)
v

If we examine the contribution to the integral from a thin annular slice when
|*'| > (]o| or |r|), we find, on expanding the two-dimensional U tensors into
Taylor series and retaining only the first term, that the integrand per unit length
can be written approximately as

/
(il'i - Q’L) QD%@ 6Dmn'r's (r/) Ag?s (T'I) 7'/ d'f'/ dc9 (317)

Now the derivative of the U tensor decreases as (') 73, so that the integrand
decreases as (r') 2 and the contribution from the volume in the region extending
from ' to co decreases to zero as the radius r’ increases. The volume integral in
(2.22) is therefore absolutely convergent and is now independent of the shape of
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S when the volume integration extends over an infinite number of unit cells. This
independence of Ael; (r) on the shape of the surface S is also clear from physical
principles, since in figure 1 b the actual fluctuating incremental surface traction on
S—which would exist if the outer region beyond S were composed of unit cells—is
equipollent to the average value corresponding to that of the homogenized outer
medium. Only the difference between the fluctuating and average incremental
surface traction on S in figure 1b contributes to the total strain increment at the
field point r, and since the true varying incremental surface traction varies as
much above the mean value as below it, this contribution vanishes at the field
point in accordance with Saint-Venant’s hypothesis.

The increase in convergence of the integrand, as evidenced in equations (3.16)
and (3.17), has been achieved by replacing the conditionally convergent integral
in equation (2.17) with the absolutely convergent Frullani difference integral (Jef-
freys & Jeffreys 1988) in equation (2.22). Since the volume averaged polarization
term in (2.22) is constant, the subtraction of the volume averaged term essentially
represents a renormalization of the applied strain increment, Asgl, due to embed-
ding the surface S, which may be at ‘infinity’, in a homogenized medium ‘beyond
infinity’. In some instances, for example (Mura 1987) in a three-dimensional pe-
riodic distribution of spherical inclusions with dilatational eigenstrains, the omis-
sion of the volume averaged term, (Apy; (7)), from the integral equation will result
in the polarization term, Apy; (), becoming an infinite diverging volume integral.
The renormalization brought about by subtracting the volume averaged polar-
ization essentially subtracts two integrals, each of which may be conditionally
convergent or even divergent, to produce a convergent Frullani integral equation.

The conditional convergence (or divergence) of the volume integral in (2.17)
has a curious history. By effectively subtracting the average polarization from
(2.17) to obtain the absolutely convergent polarization difference in equation
(2.22), Clausius and Mosotti, in an analogous electrical problem, correctly com-
puted (Jackson 1975) the effective dielectric constant of a material in which the
atoms were supposed to be conducting spheres embedded in a matrix dielectric
material. The same technique is used in optics (Born & Wolf 1980) to obtain
the Lorentz—Lorenz formula which relates the refractive index of a material to its
density. In 1892 Lord Rayleigh treated the question of determining the effective
thermal/electrical conductivity (Rayleigh 1892) of spheres and cylinders arranged
in rectangular order in a matrix of uniform conductivity. Since he did not sub-
tract the volume averaged term in an explicit manner, the series which arose
in his calculations showed conditional convergence, in which the electric field or
temperature in the unit cell depended on the shape of the surface S separating
the finite number of spheres (cylinders) from the infinite outer matrix beyond S.
By assuming that the shape of S corresponded to a rectangular shaped needle ori-
entated in the direction of the electric field or temperature gradient, the effective
volume average of the polarization term vanishes as the needle becomes longer,
and Rayleigh obtained the correct value for the conductivity. In taking S to be
needle shaped he was emmulating a procedure used by Lord Kelvin to determine
the effective magnetic field inside a magnetic material forty one years earlier.
Kelvin, and Poisson before him, had noted (Whittaker 1989) that the magnetic
intensity inside a small cavity within the medium depended on the shape of the
cavity. Kelvin showed that the actual magnetic field within the medium was rep-
resented by the value of the field within a narrow tubular cavity tangential to the
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direction of magnetization. In a letter to Stokes in 1849, Kelvin (1990) called the
needle shaped cavity S a split in the magnetic medium.

The procedure used by Kelvin and Rayleigh, when cast into the present context,
amounts to writing the total strain increment as '

Aejy (1) = Al + Apya (r,S) — (Apg (r, S)), (3.18)

where the explicit dependence of the polarization and its volume average on the
surface of separation S is noted. When S is needle shaped in the direction of the
applied field, the polarization average can be transformed to a surface integral
over the needle’s surface, S. If the integrand has no component perpendicular to
the needle, as will be the case when the needle is parallel to the applied field,
and the needle is highly elongated, the surface integral and hence the volume
averaged polarization tends to zero. Rayleigh was aware that the omission of
(Apg (r,S)) from (3.18) is allowed, and is compensated by the corresponding
change in the sum for Apg; (r, S) when S is an infinite rectangular needle, for in
a footnote he states: ‘It would be otherwise if the infinite rectangle were supposed
to be of another shape, e.g. to be square.” This technique of omitting the volume
averaged term and summing over a long needle shaped region gives the correct
result for electrical and temperature problems, but in the elastic case the total
strain increment depends on all the components of the overall applied stress or
strain increment, and therefore the sum would have to be taken over different
needle orientations for the different components.

Doubts were cast on Rayleigh’s procedure (but not his results) by Levine (1966)
and Jeffrey (1973). Later, a physical basis for the conditionally convergent sums
was explained in the electrical context by McPhedran & McKenzie (1978) and
McKenzie et al. (1978), in which they showed that the shape dependence arose
from the depolarizing field on the surface S.

To avoid the conditionally convergent sums, Jeffrey (1973) used a general math-
ematical technique devised by Batchelor (1972) in computing the effective conduc-
tivity of a random suspension of spheres, while McCoy & Beran (1976) essentially
used the volume averaging technique to achieve absolute convergence.

Furuhashi et al. (1981) and Mura (1987) have commented on the conditional
convergence (and divergence) of series which arise in computing the effect of
periodic eigenstrains via a Green’s function approach. They observe that by sub-
tracting a constant comparison series, in which the field variable is evaluated at
the centre of each unit cell, the series difference is absolutely convergent. They
note that an arbitrary constant can be added to the periodic sum and determine
this constant by requiring the volume averaged stress to satisfy the condition
of periodicity. This condition is met by requiring the volume averaged strain to
equal the applied strain, which, for the periodic eigenstrain problem, is zero.
However, the series difference plus the constant arising from periodicity does not
satisfy the volume average condition. They then proceed to rectify this deficiency
by subtracting a further volume averaged term. It is clear that the comparison
series can be removed from their volume integration since it is independent of
the integration variable, and the original comparison series then cancels the in-
tegrated comparison series. Since the comparison series vanishes from the end
result, it is evident that the subtraction of the original comparison series is not
required. The absolute convergence of the series is effected by the subtraction of
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the volume averaged term alone; a result in harmony with the contention of this
paper.

The latest occurrence of these conditionally convergent sums appears in the
paper by Horii & Sahasakmontri (1990) in which they calculate the stress distri-
bution and stress intensity factors in a doubly periodic array of cracks. They give
the history of the crack problem as it emerged during the last two decades, and
its resolution by averaging techniques.

4. Numerical solution of the integral equation

In the remainder of the paper we shall be concerned with the two-dimensional
form of the integral equation (2.22) as applied to a periodic lattice.

We can make the implied summation in equation (2.22) explicit by introducing
the matrix/vector relations

m 0
m=(01 m2> and L= (L1, Ly), (4.1)

where mj,mo are integers. Within a given unit cell, let » = (z1,z2) be the
position vector to the field point with respect to a cartesian coordinate system
whose origin is located at the centre of the unit cell, and let ' = (z, 7)) be
the position vector to the corresponding source point in the same unit cell which
contains the field point 7. The corresponding position vector to a similar source
point in a unit cell located m; and mgy periodic lengths upstream in the z; and
xo directions is given by

" = (] +miLy) i+ (x5 + maLlo)j =7 +m- L. (4.2)
Equation (2.22) can then be written in the two-dimensional form
Ael; (r) = A&Y,

+oo oo
- > > // Ukimn (r = ") 6 Dyys (7) Ae, () dS (r")
m1=0m2=0 Ac(ma,mz)

+oo oo

+—Z ) // ds(r)

€ m1=0mo=0 Ac(0,0)

x / / Ut (7 — ) 6 Dyrs (") AL, () dS (#),  (4.3)
Ac(mi,ma)

where A; (m1, m2) denotes the area of the unit cell whose centre is located at the
point (myL1,maLs), and A (0,0) is the area of the unit cell containing the field
point 7. For brevity we will set A. = A (0,0).

From the periodicity of the lattice it follows that

0D pnrs (7'//) O0Dmnrs (7'/ +m - L) 6Dmn'rs ( /)

Al (r") p =4 Aes(r'+m-L) } = () (4.4)
s (r") dS(+' +m - L) dS( '
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so that the integral equation can be written as
Ael, (r) = A&y,
+oo +oo
Y / / Uimn (7 — 7 — M- L) 8 Dyrs (') AT, () dS (1)
m1=0mg=0 A
+oo oo

+Aicz Z/ ds(r)

m1=0mo=0 A

X / Uklmn (T —r'—m- L) 5Dmnrs("°/)A€g‘s (T/) ds (T/)a (45)
Ac

where the integration with respect to the source point ' now extends only over
the unit cell containing the field point . The contribution from the source points
in the remainder of the lattice is now assimilated to the summation over m; and
mo.

In a numerical evaluation of equation (4.5), we denote the double summation
over a finite number of terms from m; = 0 to &n and my = 0 to +n by Sk (r,n).
It is apparent that the zeroth approximation,

Az-:gl (r)= Asgl + Sk (r,0), (4.6)

in figure 2 a corresponds to the generalized self-consistent method in which the
fibre is surrounded by the constituent matrix phase in a single unit cell which is
itself embedded in a homogenized outer medium. Carrying out the double sum-
mation to n = 1 and n = 2 shows that the approximations Sy; (r, 1) and Si; (r,2)
correspond to considering the interaction of the unit cell with its eight nearest
neighbours in figure 2b and the additional sixteen adjacent outer neighbours
in figure 2 ¢, when these are embedded in the homogenized outer medium. The
successive approximations converge very rapidly with increasing n, and by com-
paring the results for n = 0 with those for n = 1,2,...,etc. we can estimate the
accuracy of the generalized self-consistent method in comparison with the exact
solution for an infinite periodic lattice. The rapid convergence of the successive
Poisson summations, where effective convergence is obtained with 1 terms in
each direction, should be contrasted with the much slower convergence of the
Fourier series summation, which requires at least 50 terms in each direction to
achieve comparable accuracy. This observation is in keeping with the well-known
fact (Wallace 1984) that if a Fourier series is slowly convergent, then its Poisson
sum counterpart converges rapidly, and vice versa.

A numerical solution to the integral equation can be achieved by dividing the
unit cell into a number of discrete subvolumes, and by approximating the strain
increment, Ae’; (7'), in the Bth subvolume integral with its average value in the
subvolume, namely, by

ATS — 7;; / / AEL () dS (), (4.7)
Ap

where Ag is the cross-sectional area of the subvolume.
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(@) (b) ()
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n=0 n=1 n=2

Figure 2. (a) Generalized self-consistent method (n = 0); (b) with 8 nearest neighbours
included (n = 1); (c) with 24 nearest neighbours included (n = 2).

Let there be N subvolumes in the unit cell, with M subvolumes in the fibre and
N — M subvolumes in the matrix. It may be noted that if any function g (r) is
approximated as being piecewise constant and equal to g° in the Bth subvolume,

then
1 N
=—[[g(r)dS (r)=>" 4", (4.8)

where f# = Ag/A. is the volume fraction of the subvolume 3 such that Zgzl 8=
1.

We now suppose that the field point 7 is located in the ath subvolume, and
we locate the origin of the local coordinate system &1, &2 at its centroid, (z, z$),
so that r = (z§ + &1, 25 + &2). Local coordinate systems 71,72 are also located

at the centroid of each subvolume, and when the source point is located in the

Bth subvolume we write r’ = (mf + 1, :cg + n2). Then, following the notation of

equation (2.15), the integral equation may be written in the form

N N
Ay (a5 +&1,28 + &) = Al + > Apjy — < S Apy > : (4.9)
p=1 p=1

where, for rectangular subvolumes,

:tn B I
aﬁ L2 Ly/2
Prl =~ 8 8

n1——L1/2 ne=—L /2

m1= O'mz 0

X Ugimn (CB? — o] +& —m —miLy, 2§ — 25 + & —n2 — msz) 8Dprs Ay,
(4.10)
in which L/f , s o are the lengths of the sides of the th rectangular subvolume in

the x1,zy directions, and where DB, = Df ~— Dm  or 0 according as the
subvolume # is in the fibre or matrix, respectively.

We may now volume average the integral equation in (4.9) over the ath sub-
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volume using equation (4.7) to obtain

M
Aert = Aely — > P8l Aell + Z Z FIFPSIE AP, (4.11)
=1 y=1p3=1

where

tn Lg/2 Lg/2 L?/2 B2
aﬁ . 2 2
f Skl'rs - LaLa Z Z / /5 / /

m1=0m2=0 L=—L%/2 2=—L§/2 m= “Lﬂ/z 2——Lﬁ/2

X Uglmn (37? - 371 + 51 i/ S miLq, (IJ% - Cb’g + 52 — M2 — m2L2> 5D7€mrs’
(4.12)
and the volume average of the polarization strain increment is evaluated using
equation (4.8). The matrix tensor Sz‘g , is akin to Eshelby’s tensor (Eshelby 1957;
Mura 1987) for an ellipsoidal inclusion, but accounts for the interaction between a
rectangular subvolume with its neighbours in the infinite lattice. Its counterpart in
the Fourier series subvolume representation of equation (2.5) is given by equations
(22) and (24) of Walker et al. (1991, 1992), respectively. If the cross-section of the
subvolume were of elliptical shape and the tensor §DS, . in equation (4.12) is
replaced by D2, ., then the term f*Sg/, would correspond precisely to Eshelby’s
tensor for the ath subvolume.
It may be noted that the superscript 3 in equation (4.11) is summed only over
the subvolumes in the fibre, where (1 < 3 < M), since §D2,,,, = 0 if the Bth
subvolume resides in the matrix, so that

S,dm =0 for M<B<N. (4.13)

Thus only M unknowns (associated with the subvolumes in the fibre) are in-
volved in equation (4.11). When this relation is assembled columnwise for each
subvolume «, the solution to the 6 M x 6M system of equations can be obtained
by LU decomposition (Press et al. 1986). We then have to solve the system of
equations

M
S B All =AY for a=1,2,...,M, (4.14)
where
Bl?lgs = 6 Iips + f° Skzrs Z f'yfﬁSklrs, (4.15)
y=1

with Iyp.s = (5;”515 + 6xs017) denoting the fourth rank identity tensor and 5P
the matrix Kronecker delta.

Equation (4.11) can then be used with the known values of Askl in the fibre
subvolumes, where (1 < 8 < M), to compute the values of Ael? in the matrix
subvolumes, where (M < a < N). Once the total strain increment Aer,flﬂ has
been determined for all the subvolumes in the unit cell, further resolution can
be acquired by using equations (4.9) and (4.10) to determine the total strain
increment Aej, (z§ + &1, 25 + &2) at any point (£1,&2) within the ath subvolume.
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5. Matrix assembly of discretized integral equation

The solution of the integral equation in (4.14) requires the evaluation of the

matrix tensor S,?‘lfs from equation (4.12). For an isotropic matrix constituent
phase with Lamé constants, \™ and p™, the Green’s function (2.19) can be written
as (Chen & Young 1977; Walker et al. 1989)

1 O —7'| AP O2r — |
Gom (r =) = g m (5’“” 0z 07, AP+ 2um O30Ty (5.1

and differentiated to yield the two-dimensional form of the tensor Uy, (7) in
equation (2.18) in the form

/ 1 /OO / 841T — rll
_ - _ opm=——m————
Uktmn (r T ) 167 pu™ zh=—00 dzy | Oem 837l6$n8$qamq

Ot — /| 20" + ™) 0r — 7| ) (5.2)

+ 6 -
fm 0x1,0x,0740%, AR 2um Qxp0x0xm 0T,
Alternatively, we can write the inverse Christoffel stiffness tensor for an isotropic
matrix material in the form (Walker et al. 1989)
_ bij AT
1 ) .

M (€)= T O 1 o) GGy (5.3)
and when this relation is inserted into (2.19) and the required differentiation
in (2.18) is carried out, the two-dimensional Fourier integral representation of
Ukimn (r — 7') can be written as

Ut (r / / / &K (6kmclcn2:m&m<kcn _ Mm?:lm:u;nﬂm) i)

o0
e—i{K1 (zy —z’1)+K2(x2—a:’2)+K39:3} eiK3a:§,’ d(L'/3 (54)
xh=—00
The integration with respect to % produces the term 276 (K3), where & (K3) is
the Dirac delta function, and the subsequent integration with respect to K3 then
allows the two-dimensional form of Uy, (7 — 7’) to be written as

U // dK; dK2 <5kmClCn + 01mCrCn AT 4 ™
klmn -

e s i)

o~ {Ki@—a)+ K (@ =a0)} (5 5)

in which ( = K //(K? + K3) for m = 1,2.

If the Green’s function is given in algebraic form, the integrations involv-
ing Ukimn (r — r') must be carried out using equation (2.20). However, equa-
tion (2.17) may be used directly when the Fourier integral representation for
Ukimn (T — ') in equation (5.5) is used. When (5.5) is substituted into (4.12) and
the integration over the interacting subvolumes o and (3 is effected, we obtain the
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following non-zero components of the matrix tensor S,‘:lf S

P8 = Uﬁ'ﬁléDflll + Uﬁﬂm‘SDfmm (5.6)
P85y = U6 D195 + Ulha8 DYy, (5.7)
P850 = U6 D% 95 + Urya8 Di1a, (5.8)
2855 = Uifed Dl + Usipa8 Dhag, (5.9)
25550 = Untya6 Di1g5 + Usyo8 D1y, (5.10)
P85 = U6 D19y + Ustya8 Di1ga, (5.11)
P83, = (Ufgiz + U&%) 8 Dfy15, (5.12)
where
D%y = (W = X™) + 2(u® — ™), (5.13)
§DP oy = NP — 2™, (5.14)
5D?212 = ﬂﬁ — (5.15)
and

U, = 198 1 198.) + 6. 5.16

e

Ul = ¢ 5.17
122 = 5 m (\m 4 gpm) 122 (5.17)
1 B 4 g -
U2222 = - 2um (t22ﬁ22 + tuﬁw) + 2 (1 2m) tggzz» (5.18)
Uilzﬂlz = - um (tzzﬁzz + t1€22> + 2 (N 2 t(ﬁﬁzza (5.19)
U1221 = T om (tllﬁll + t1522) + 2 (A 4 2m) t?fzz' (5.20)

In equations (5.13)—(5.15) the Lamé constants (A8, uP) are equal to (A, uf) or
(A™ u™) for isotropic constituent phases, depending on whether (3 represents a
fibre or matrix subvolume. With the definitions

oy =% —2f — LL¢ —mily,  ay=af—af + 30§ —mili,  (5.21)
and
yr, = o5 — 2 — LS — maL, yu = x5 — 25 + 31§ — maLa, (5.22)
the components of the shape factor matrix tensor, t*? are defined by the relations
+n
1111 = Z Z {- UCL»HCU,QL,Z/U»L?,L@+‘¢($La$U,yL,yU,Lf,—L5)
M0 L B(w, 3,y v, — L8, L) — (@, wu,yi,yu, —LY, —L5)

- ‘I’(Z'LJU,Z/L»?JU»Lf,Lg)}, (523)
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+n  4n

thﬂQ2 = Z Z { - @(ZIL,?JU,Z'L@UvL/faLg) + @(yL,yU,.TL,ZUU,L'f, _Lg)

m1=0mqo=0

+ @(yLa Yyu,TrL,xU, _Lfa Lg) - Q(yLa Yu,xr,TU, _Llfa _Lg)

— U(yL,yu, xr, 30, LY, L§)}, (5.24)
+n +£n
t?1ﬁ22: Z Z W(mLaanyLayUaLfaLg)a (525)

m1=0mo=0
where

D(zr, U, YL, Yu, D, q) =
(qzr + 2zryr + pyL — qzu) sgn (¢ + 2yr)sgn (p + 2z1.)

* 1L9Lg
_ (gxr +2xryr + pyu — gzu) sgn (g + 2yu)sgn (p + 2zy)
ALSLS
p+ 225, p+ 2z,
(p+ 2z, {yU arctan ( > — yr, arctan (——-)}
" ) at+2y) Y q+2yr
2 LYLY
2
(p+ 2zy) {yU arctan <w) — ¥y, arctan <_q_+2i)}
n P+ 2zy P+ 2xy
2 LYLY
2
q(p+ 2z1) {a,rcta,n (M) — arctan (lﬂ)}
I P+ 2zy, p+2zy,
ATLSLS
q(p+ 2zy) {arctan (q_ﬁﬂ) — arctan (Mi)}
" P+ 2zy P+ 2xy
AnLLg
_ {lp+221)* — (a4 2y0)*} In{(p + 221)% + (g + 2y1)*}
167 LY LS
N {(p+2x1)* — (q+ 2y0)?} In{(p + 221)* + (¢ + 2yp)?}
167LLS
_ {lp+220)* — (g + 2y0)*} In{(p + 220)* + (¢ + 2yv)?}
167LLg
L L+ 200)% = (g 4 2y1)* In{(p + 200)* + (4 + 291)%) (5.26)
167 LS LS '

and
lI’(Cl:La TU,YL,Yu,D, Q) = (327TL?L%)_1
X[ ={(p+2x1)® + (¢ + 2y1)*} In{(p + 221)% + (¢ + 2y1.)%}
+{(p+221) + (¢ — 2y1)*} In{(p + 221)? + (¢ — 2y1)?}

—{(p+220)* + (¢ - 290)*} In{(p + 22.)* + (¢ — 290)*}
Phil. Trans. R. Soc. Lond. A (1993)
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+{(p+22.)* + (¢ + 2y0)*} n{(p + 221)* + (¢ + 2yv)*}
—{(p—22)* + (¢ — 2y1.)*} In{(p — 221)* + (¢ — 2yr)?}
+{(p—2x1)* + (¢ — 2y0)*} In{(p — 221)% + (¢ — 2yv)*
—{(p— 221)* + (¢ + 2yv)*} In{(p — 2z1)*

}

+ (q+2yv)*}

+ {(p+230)% + (¢ + 2y.)*} In{(p + 220)? + (g + 2y1)?}

—{(p+2zv)* + (¢ — 2y.)*} In{(p + 220)* + (¢ — 2y1.)*}

{0+ 220)% + (¢ — 290)*} In{(p + 220)? + (¢ — 2y0)*}

{(p+220)% + (q+ 2yv)*} In{(p + 230)* + (¢ + 2yv)*}

+{(p—2zv)* + (¢ — 2y1)*} In{(p — 220)* + (¢ — 2y1)*}

{(p = 22u)* + (q+ 2y)*} In{(p — 221)* + (¢ + 2y1)*}

{(p — 2zv)* + (q+ 2y0)*} In{(p — 2zu)? + (¢ + 2yu)*}
{(p — 220)* + (¢ — 2y0)*} In{(p — 2z1)* + (¢ — 2uv)*}].

(5.27)

6. Homogenized moduli

The homogenized elasticity tensor for the periodic composite material can be
obtained by volume averaging equation (3.9) over the unit cell by means of equa-
tion (4.8). Noting that (Aoy;(r)) = Aoy and (Aejy(r)) = Ael;, the homogenized
constitutive relation is

M
T
Aol = DB A + 5 fﬁapfjklAek,ﬂ. (6.1)
B=1

If the inverse matrix to B,‘:lf s in equations (4.14) and (4.15) is denoted by Aklr o
then we may write the solution to equation (4.14) in the form

o _ZA@Z,SA@TS Mp, A for B=1,2,..., M, (6.2)
v=1

where
Mp = Z A for 1<B<M (6.3)

is the magnification or strain concentratlon tensor (Walker et al. 1991; Dvorak
1990, 1992; Dvorak & Benveniste 1992) which determines the local strain field at
any subvolume in the fibre in terms of the uniform overall applied strain field.
The strain magniﬁcation tensor for the matrix subvolumes,

N M M
Mgy = Tnirs — Z Z RS AR + >3 Z FIfsp Al (6.4)

=1lv=1 y=1p=1v=

for M < o < N, is obtained by substituting (6.2) into the integral equation (4.11).
On substituting (6.2) into (6.1) we observe that the homogenized constitutive
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relation can be written in the form
AJ% = D’l?jklAEgh (65)

where the homogenized or effective elasticity tensor is given by

M
D = Dy + > fP6D)), MYy, (6.6)
=1

7. Numerical examples

The generalized self-consistent method, corresponding to equation (4.6) and
figure 2 a, is compared with higher order approximations involving Sk; (r,1) and
Ski (r,2) in figure 2b and ¢, for two separate composite materials. For three of
the volume fractions, the unit cell is discretized into 49 square subvolumes and
the local transverse stress field, assumed constant in each subvolume, is tabu-
lated. At the largest volume fraction investigated, namely, 75.11%, the unit cell
is discretized into 225 square subvolumes. The first composite material consists
of a copper matrix containing periodically distributed cylindrical voids of square
cross section, and computations are carried out for void volume fractions of 2.04%,
18.37%, 51.02% and 75.11%. In the second composite material the voids in the
preceding computations are replaced by tungsten fibres of identical shape and vol-
ume fraction. This case determines the accuracy of the generalized self-consistent
method when the fibres are stiffer than the matrix constituent phase.

The copper matrix with periodic voids is loaded in the transverse direction
under a uniform overall applied stress of ¢{; = 1000 kPa. All other components
of a?j other than of; are assumed to be zero. The elastic moduli are assumed
to be given by Fcy, = 127 GPa and voy = 0.34. Figure 3a—c presents a nu-
merical tabulation of the constant valued stresses, o11, for each of the 49 square
subvolumes in the unit cell for void volume fractions of 2.04%, 18.37%, 51.02%
and for each of the 225 subvolumes for the void volume fraction of 75.11% in
figure 3d. In each subvolume the upper number represents the transverse stress
according to the generalized self-consistent method (n = 0, figure 2 a), while the
numbers below represent the transverse stress when the unit cell is surrounded
by its eight nearest neighbours (n = 1, figure 2b) and an additional 16 surround-
ing neighbours (n = 2, figure 2¢), respectively. As may be observed from these
tabulations, the case where n = 1 has converged to within an accuracy of four
significant figures, and as such, can be used to construct error estimates of the
generalized self-consistent method, where n = 0.

When the void occupies only a 2.04% volume fraction of the unit cell, the results
in figure 3a show that the local transverse stress field of the generalized self-
consistent method is accurate to within 3% throughout the copper matrix phase.
Table 1 shows that the generalized self-consistent transverse Young’s modulus is
accurate to within 0.1% at this low volume fraction.

At a volume fraction of 18.37% the local transverse stress field is in error by
up to 35% in the matrix ligaments perpendicular to the applied stress. How-
ever, the transverse stresses in the ligaments are small compared with those in
the ligaments parallel to the applied stress, and contribute but a small error to
the homogenized transverse modulus. The error in the homogenized modulus is
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Figure 3. Local elastic transverse stress field, 011, in a voided periodic composite subjected to
a uniform overall applied stress of ¢9; = 1000 kPa: (a) void volume fraction = 2.04%; (b) void
volume fraction = 18.37%; (c) void volume fraction = 51.02%.
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Figure 3. Local elastic transverse stress field, 011, in a voided periodic composite subjected to
a uniform overall applied stress of ¢9; = 1000 kPa: (d) void volume fraction = 75.11%.

Table 1. Homogenized transverse Young’s modulus for copper with periodically distributed voids

void volume fraction 2.04% 1837% 51.02% 75.11%

approximation transverse Young’s modulus/GPa

generalized self-consistent method (n=0) 120.54 80.48 34.84 14.21
with 8 nearest neighbours included (n=1) 120.63 83.49 40.47 18.39
with 24 nearest neighbours included (n =2) 120.63 83.50 40.48 18.40

further reduced because of the volume averaging. For example, the stresses in
the ligaments parallel to the applied stress are underpredicted by the generalized
self-consistent method, while those in the ligaments perpendicular to the applied
stress are overpredicted. This cancelling of errors is due to equilibrium consid-
erations, which dictate that the average of the local stress field must equal the
applied stress field. Table 1 shows that the overall transverse modulus is accurate
to within 4% at 18.37% void volume fraction.

When the void volume fraction increases to 51.02% the transverse modulus
in table 1 is in error by 14%. The middle of the perpendicular ligament is now
in compression at a transverse stress of —32 kPa, while the generalized self-
consistent method predicts a tensile stress of 115 kPa. At the largest void volume
fraction of 75.11% the error in the transverse modulus rises to 23%. Large errors
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Modelling the elastic behaviour of periodic composites 569

Table 2. Homogenized transverse Young’s modulus for tungsten fibre—copper matriz periodic
composite

fibre volume fraction 2.04% 18.37% 51.02% 75.11%

approximation transverse Young’s modulus/GPa

generalized self-consistent method (n=0) 129.85 154.69 220.89  291.92
with 8 nearest neighbours included (n=1) 129.87 156.18 229.07  300.68
with 24 nearest neighbours included (n =2) 129.87 156.18  229.09  300.70

are again observed in the perpendicular ligaments. However, the transverse stress
is zero in the central portions of the perpendicular ligaments and the subvolumes
in this region, which possess the largest error in the transverse stress, contribute
but little to the homogenized modulus compared with the subvolumes with large
transverse stresses in the ligaments parallel to the applied stress.

An examination of figure 3a-d shows that the effect of including the eight
nearest neighbours gives a very accurate representation of the local transverse
stress field within the unit cell. The effect of adding an additional layer of unit
cells comprised of the next 16 nearest neighbours results in changes of less than
0.1% to the local stress field.

In the second example we use the same loading condition but now look at the
case where the fibre is stiffer than the copper matrix phase of the unit cell. In
particular, we examine the local transverse stress field and homogenized trans-
verse Young’s modulus for a tungsten—copper fibrous composite. The tungsten
fibre is of square planform and occupies the same volume fractions as the pre-
ceding voids. The elastic moduli of the isotropic tungsten phase are assumed to
be given by Ew = 395 GPa and vw = 0.28. Transverse stresses are depicted in
figure 4 a—d, and the homogenized transverse Young’s moduli are listed in table
2.

A general conclusion is that when the fibre phase is stiffer than the matrix
phase by about a factor of three, the generalized self-consistent method gives
results which are more accurate than the extreme case of voids. Errors in the
local stress field are now largest in the matrix ligaments parallel to the applied
stress field, and are smallest in the perpendicular ligaments, which contrasts
with the behaviour in the voided composite. In both examples the generalized
self-consistent method underestimates the effective transverse Young’s modulus
of the composite.

In figure 4 e the results from the Fourier series approximation (cf. (2.5)) given
in Walker et al. (1991, 1992) can be compared with the Green’s function results
in figure 4 b. The Fourier series computations in figure 4 e show the results of sum-
ming the Fourier series to n, = 50, £70 and £200 in equation (2.5). Agreement
between the results in figure 4 b and e is very good and demonstrates the numer-
ical equivalency of the Poisson sum transformation of the Fourier series into the
equivalent Green’s function method. The rapid convergence of the Green’s func-
tion Poisson sum in comparison with the Fourier series representation is especially
noteworthy.

The two preceding examples compare the accuracy of the generalized self-
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Figure 4. Local elastic transverse stress field, o11, in a tungsten—copper periodic composite
subjected to a uniform overall applied stress of ¢?; = 1000 kPa: (d) fibre volume fraction =
75.11%; (e) fibre volume fraction = 18.37%, Fourier series solution.

SOCIETY

consistent method for a two-dimensional fibrous medium, when the integral equa-
tion governing the distribution of the local strain field in the unit cell is solved
numerically. We now examine the case of a one-dimensional laminated medium in
which slabs of tungsten are sandwiched between slabs of copper. This allows the
numerical results to be compared with an exact solution. In figure 5 the unit cell
is discretized into 49 subvolumes and is embedded in the homogenized medium
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Figure 5. Generalized self-consistent approximation (n = 0) to the local elastic transverse
stress field, 011, in a one-dimensional laminated medium.

corresponding to the generalized self-consistent approximation, Sk (r,0). The
tungsten occupies the seven subvolumes between the points A and B in the unit
cell of figure 5, and when this cell is repeated in both directions the overall ma-
terial corresponds to a one-dimensional laminated structure. When this medium
is loaded with an overall transverse stress of o{; = 1000 kPa, with all the other
components being zero, the transverse stress in the medium must be uniform and
equal to the overall applied stress.

The transverse stress distribution in the unit cell according to the general-
ized self-consistent method (n = 0) is shown in figure 5. In the actual laminated
structure, and in the higher order approximations Sk; (r,1) and Sk; (r,2), the
subvolumes at points A and B interact with adjacent tungsten subvolumes in
the surrounding neighbours, and the transverse stress distribution in the near-
est neighbour approximation (n = 1) is within 0.1% of 1000 kPa for all the
subvolumes in the unit cell. However, in the generalized self-consistent approxi-
mation, the tungsten subvolumes at points A and B interact with the surrounding
homogenized medium. Consequently, the stress is higher in these subvolumes and
lower in the remaining tungsten subvolumes. The formation of a ridged valley
(Walker et al. 1991) in the tungsten in figure 5 is apparent, where the transverse
stress forms a central valley parallel to the loading direction in which the stress
is approximately 967 kPa, with values of 1110 kPa in the north and south ridges
at A and B. In this discretization the generalized self-consistent method gives a
maximum subvolume stress error of 11% within the unit cell.

An exact representation of the transverse Young’s modulus for a laminated
medium can be obtained if we assume that the strains in the directions xs, 3
transverse to the loading direction are equal in the two phases, and that the only
overall stress component is ;. If the volume fractions of the fibre and matrix
phases are f and 1 — f, respectively, then the overall transverse Young’s modulus
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Table 3. Comparison of transverse Young’s modulus for tungsten fibre—copper matriz
one-dimensional laminated and two-dimensional fibrous composite

transverse Young’s modulus/GPa

one-dimensional  two-dimensional tungsten
laminated lattice fibrous lattice volume fraction

130.15 129.87 2.04%
155.84 156.18 18.37%
217.30 229.09 51.02%
283.38 300.70 75.11%

can be written in the form,
-1

B of (AL _ D
Eif“Ef‘{lgswifffi?l:ﬂ} -

This yields a value of Ex = 149.27 GPa for the tungsten/copper laminated ma-
terial, which may be compared with the generalized self-consistent value (n = 0)
in figure 5 of E%=0 = 147.43 GPa. The next order approximation (n = 1) gives
En=! = 149.27 GPa, which is correct to two decimal places (five significant fig-
ures).

The approximation Sk; (r,1), which includes the interaction of the unit cell
with its eight nearest neighbours, gives results for a laminated medium which are
accurate to within 0.1% for both the moduli and the local elastic stress field.

A final observation which may be adduced from the computations is the relative
insensitivity of the homogenized transverse modulus to the shape of the fibrous
inclusions. This insensitivity has also been noted by Zhao & Weng (1990). In ta-
ble 3 we exhibit the transverse modulus for the two-dimensional fibrous medium
compared with the one-dimensional laminated medium for the same tungsten
fibre volume fractions. Even when the volume fraction increases to 75% the dif-
ference in the transverse Young’s modulus in the two materials amounts to only

6%.

8. Conclusions

The effects of fibres distributed in periodic fashion in an infinite uniform ma-
trix phase can be assimilated to the summation of fictitious periodic body forces
in the uniform matrix. Local elastic fields within the unit cell can be obtained by
summing the effects of these body forces from the infinite lattice of fibres with
a Green’s function approach, and by ensuring that the volume averages of the
local elastic fields over a unit cell in the periodic lattice are equal to the uniform
overall applied fields. This paper demonstrates that the generalized self-consistent
method is equivalent to the zeroth term in the infinite body force summation, and
by comparing the zeroth term with higher order sums representing the contribu-
tion from layers of neighbouring unit cells in the periodic lattice, the accuracy of
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the generalized self-consistent method has been assessed. The accuracy is found
to be very good, even in the extreme case of a composite containing a high volume
fraction of voids. When the interaction between the unit cell and its eight nearest
neighbours is included, the integral equation gives results which are very near
the exact results, and even a laminated medium can be accurately modelled. The
effect of including the interaction between the unit cell and the sixteen additional
neighbours surrounding the nearest eight is found to be very small, showing that
the Poisson sum provides a rapidly convergent solution for the periodic compos-
ite material. A history of the need to subtract the volume averaged polarization
term from the volume integral of a periodic boundary value problem to obtain
absolutely convergent solutions is discussed.

The work of two of the authors (K.P.W. and E.H.J.) was supported by the United States
Department of Energy under Grant Number DE-FG02-92ER14247. Dr Oscar P. Manley served
as contract monitor.
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